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Abstract

Questions: Increasing climate variability has major effects on forest productiv-

ity, as well as transitions between forest and savanna ecosystems. While

drought-induced declines in tropical forest productivity and forest loss is a global

concern, forest expansion in subtropical South America predicted by climate

models has received little attention. In the forest–grassland transition zone

encompassing Uruguay, we ask: (1) how does climate variability affect wood-

land productivity and at what time scales; and (2) how do different woodland

types (riparian, hillside and wooded savanna) differ in their sensitivity to climate

variability?

Location: Forests and wooded savanna in Uruguay, subtropical southeast South

America.

Methods: Primary productivity was measured as the fraction of photosyntheti-

cally active radiation (fPAR) based onmonthly normalized difference vegetation

index (NDVI) from multitemporal (1998–2012) SPOT imagery at a

1 km 9 1 km resolution, covering 19% of Uruguayan woodlands. The effects

of accumulated rainfall and mean temperature on the productivity of riparian

and hillside forests and wooded savanna were evaluated using correlations and

time series analysis over multiple time windows ranging from 1–24 mo.

Results: Inter-annual rainfall variability and seasonal temperatures affected for-

est productivity even though average conditions were largely non-limiting. Peri-

ods of exceptionally high rainfall and warmwinters had positive effects on forest

productivity, but hot summers had a negative effect on all woodland productiv-

ity. Riparian and hillside forest productivity was equally susceptible to drought,

showing similar relationships to accumulated rainfall over multiple time periods,

as well as similar susceptibility to high summer temperatures. Wooded savanna

– a composite cover of trees and a grass/forb understorey – productivity was

linked to seasonal rainfall over 3–6 mo, and in general showed the lowest corre-

lation with inter-annual variability in rainfall.

Conclusions: Results suggest functional convergence in the response of riparian

and hillside forests to water deficit and hot summers. The increases in forest pro-

ductivity with increasing rainfall and declining drought risk – as predicted by the

IPCC for this region – are a potential mechanism for increased growth and future

expansion of forests in this biogeographic transition zone.

Introduction

The sensitivity of forest ecosystems to climate variability

varies at different time scales (Barnes et al. 2016; Seddon

et al. 2016). Forest productivity and precipitation at annual

time scales are most tightly related in arid and semi-arid

ecosystems (Schuur 2003). Meanwhile, recent evidence of

the effects of long-term and severe drought on tropical tree

growth (Wagner et al. 2014), primary productivity (Asner

et al. 2004) and diversity (Engelbrecht et al. 2007)
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emphasize the critical role that inter-annual variability in

precipitation plays in the functioning of forests in humid

climates. Although annual net primary productivity

(ANPP) is poorly predicted by mean annual precipitation

(MAP) in humid tropical and subtropical climes (Cha-

maille-Jammes & Fritz 2009; Paruelo et al. 2010), precipi-

tation anomalies over increasing temporal scales affect

woody growth, leaf phenology and ANPP. In general, for-

ests respond to precipitation anomalies over long-term peri-

ods (up to several years) due to groundwater access by

deep roots and the time lag between changes in water

availability and bud formation, leaf flushing and cambial

growth (Breda et al. 2006; Brando et al. 2010). Nonethe-

less, severe droughts can have immediate effects on leaf

area index and greenness via canopy thinning as a response

to soil water deficit (Breda et al. 2006). The effects of long-

term climate change on ANPP is a major driver of forest

degradation in the neotropics (Hilker et al. 2014) and a

precursor to transitions between forests, savanna and grass-

land biomes worldwide (Scheffer et al. 2012). Despite the

focus on forest-to-savanna transitions in the Amazon Basin

(Silv�erio et al. 2013), there are scant data on the relation-

ship between forest productivity and climate in regions of

forest expansion under future climate scenarios, including

the grassland-dominated humid subtropics of southeastern

South America (Anadon et al. 2014).

The impacts of extreme precipitation events differ

within a single watershed (Brooks et al. 2011), such that

riparian forests may be drought-resistant. Dry periods can

provide opportunities for cambial growth in tropical

floodplain forests (Schongart et al. 2004). Given their

proximity to the water table, riparian forests may be able

to maintain higher productivity than upland forests

during dry spells, thus playing a critical role as a refuge

during drought (Meave & Kellman 1994). The response

of upland forest productivity to dry periods is variable –
while, in general, decreases in precipitation limit water

availability to trees, the increase in sunny days during

mild dry periods can have a positive effect on forest pro-

ductivity (Boisvenue & Running 2006). Although differ-

ences in forest susceptibility to drought could be

attributed to differences in species tolerance to desicca-

tion, a global analysis shows similar species vulnerability

to hydraulic failure during drought in different forest

biomes (Choat et al. 2012).

Forest expansion is predicted from climate projections

for southeastern South America (SESA) as a result of

increasing rainfall and decreasing drought (IPCC 2014).

The advance of trees in this highly productive region for

agriculture and ranching in natural grasslands has major

ecological and economic implications. To date, the

response of vegetation to rainfall variability has largely

focused on grasslands, agricultural systems and steppe

vegetation, which dominate the landscape and character-

ize the Pampa biome (Fabricante et al. 2009; Paruelo et al.

2010; Guido et al. 2014; Ceroni et al. 2015). ANPP of

South American grasslands is highly correlated with MAP

at broad regional scales (Paruelo et al. 1998, 2010), but at

finer spatial scales in humid regions the relationship

between MAP and vegetation productivity is less strong

(Fabricante et al. 2009; Guido et al. 2014). Both NDVI and

NDVI-derived fraction of photosynthetically active radia-

tion (fPAR) are used to understand how rainfall variability

and land-use change influence grassland productivity

(Paruelo et al. 2010; Vassallo et al. 2013; Guido et al.

2014).While NDVI can saturate in forests with dense cano-

pies and high biomass (Huete 2012), it is widely used for

monitoring change in forests, savannas and grasslands of

southern South America (van Leeuwen et al. 2013;

Lezama et al. 2014) and African savannas (Chamaille-

Jammes & Fritz 2009; Fabricante et al. 2009). Given their

limited extent, the response of subtropical forests to

climate variability in the Pampa is poorly understood

(Texeira et al. 2015). We expect, given the differences in

elevation, water availability and soil drainage rates of

riparian forests, hillside forests and wooded savannas in

the region (Oliveira-Filho et al. 2013), that forest types

will display variable sensitivities to climate variability at

different temporal scales.

We aimed to test mechanisms through which forests in

humid subtropical climates responded to precipitation and

temperature variability at multiple temporal resolutions.

Using historical climate data and vegetation indices, we

examined how increasing precipitation and temperature

will affect the three principal woodland cover classes in

Uruguay at temporal resolutions ranging from 1 mo to

2 yr. Previous remote sensing of grasslands, the dominant

land cover in the Pampa biome, has examined spatial vari-

ability in NDVI (Baeza et al. 2006) and fPAR in Uruguay

(Baeza et al. 2010; Guido et al. 2014) and the greater Pam-

pean province (Paruelo et al. 1998, 2010), but with mini-

mal focus on native forest cover classes or combining

native forests with other land-cover types such as non-

native forest plantations (Texeira et al. 2015). Global anal-

yses indicate moderate–high sensitivity of Uruguayan

vegetation to rainfall variability, (Seddon et al. 2016). We

used multitemporal remotely sensed NDVI data from SPOT

imagery at a 1 km 9 1 km spatial scale and NDVI-based

fPAR to address: (1) how does climate variability affect

woodland productivity and at what time scales; and (2)

how do different woodland types (riparian, hillside and

wooded savanna) differ in their sensitivity to climate vari-

ability? We use these questions as a basis to explore how

climate variability affects the productivity of forests

expected to advance under IPCC climate predictions (Ana-

don et al. 2014).

193
Journal of Vegetation Science
Doi: 10.1111/jvs.12475© 2016 International Association for Vegetation Science

C. Lucas et al. Climate sensitivity of subtropical woodlands



Methods

Study region

Forests in the Pampa biome of southeastern South Amer-

ica occur in patches within a landscape dominated by

natural grassland and agriculture, or as gallery forests

along rivers and streams in Uruguay and south Brazil

(Soriano 1992; Brazeiro 2015). Within the Pampa, the

transition zone between forest and grassland is known as

the Northern Campos, which largely covers Uruguay

(Paruelo et al. 2010). In Uruguay, native forests cover

approximately 5700 km2, or ~3.4% of the land area

(MGAP/DIEA 2000), and comprise 315 woody species

(Haretche et al. 2012), forming a system of corridors and

patches that support avian and mammalian biodiversity

(Nores et al. 2005) and protect stream integrity. Three

major forest cover types are recognized in Uruguay: ripar-

ian or gallery forests (monte ribere~no o de galer�ıa) are the

most extensive, followed by hillside and ravine forests

(monte serrano y de quebrada) and wooded savanna (monte

parque; Brussa & Grela 2007), distributed unevenly in

seven ecoregions (Fig. 1a; Brazeiro 2015). Riparian for-

ests occur throughout Uruguay on fluvial soils with rela-

tively high water-holding capacity; meanwhile, hillside

forests largely occur in the eastern Sierras, where soils

are fairly superficial, with rocky outcroppings and moder-

ate to poor water-holding capacity (CONEAT 2012).

Wooded savannas are restricted to the littoral west along

the River Uruguay, sometimes in association with alka-

line soils known as blanqueales (Brussa & Grela 2007).

Mean annual precipitation in Uruguay increases along a

south–north gradient from 1000–1500 mm�yr�1. Rainfall

is relatively evenly distributed throughout the year

(Fig. 2), but is more variable inland than along the coast.

Inter-annual variability in precipitation is influenced by a

suite of climate phenomena, including the South Ameri-

can Monsoon System, ENSO, and the AAO (Krepper &

Zucarelli 2010). The climate is subtropical, with cool win-

ters and hot summers (Fig. 2). Mean annual temperature

increases from south to north from 16 to 19 °C.

Fig. 1. Map of forest cover in Uruguay and sampling of SPOT pixels within forest and savanna cover classes. (a) Land cover of native forest and wooded

savanna (both in black) in Uruguay according to the Ministry of Agriculture and Livestock DINOT/FAO 2013 within the eight ecoregions of Uruguay (Brazeiro

2015). Black square in the southeast shows area zoomed in (b). (b) Example SPOT satellite pixels of 1 km 9 1 km with >90% overlaid with the ‘hillside

forest’ land-cover class (bosque serrano y de quebrada). Background image obtained from ESRI Basemap Layers in ArcMap 10.0 (incl. composite IKONOS

images for South America).
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Phenology of semi-deciduous forests in Uruguay

Forests in Uruguay are classified as semi-deciduous sea-

sonal forests, characterized by the senescence of 30–60%
of foliar biomass during winter (Oliveira-Filho et al.

2013). The loss of foliar biomass during austral winter,

peaking in Jul–Sept, was shown for canopy species of low-

land riparian semi-deciduous seasonal forests in southern

Brazil, 215 km from the Uruguayan border (Athayde

et al. 2009). Leaf-out is most intense following leaf senes-

cence in Nov (spring), coinciding with increasing pho-

toperiod and temperature. Nonetheless, only 34% of the

24 tree species of the riparian forests studied are decidu-

ous, while 40% are semi-deciduous and 26% are ever-

green, resulting in asynchronous leaf phenology among

species (Athayde et al. 2009). Although phenological

studies of forests in Uruguay are scant, riparian forests

tend to be more deciduous than upland hillside forests

(Brussa & Grela 2007), potentially because of differences

in species composition, as well as different phenological

responses to climate and/or hydrology. Given continuous

rainfall year-round, it has been suggested that leaf phe-

nology in this region responds largely to temperature and

photoperiod, but variation in rainfall could play a role in

the unexpected peaks in leaf-out observed throughout the

year (Brussa & Grela 2007).

Extraction of NDVI data from SPOT-VGT imagery

NDVI is widely used to evaluate temporal change in phe-

nology and distribution of savannas and woodlands

(Mitchard & Flintrop 2013; Higginbottom & Symeonakis

2014). NDVI at a spatial resolution of 1 km 9 1 km for

the period 1 Apr 1998 to 31 Mar 2012 for all of Uruguay

was previously obtained and processed by Ceroni et al.

(2015) from the SPOT-4 and SPOT-5 VEGETATION

(VGT-S10) product. NDVI was calculated as:

NDVI = (RNIR � RRED)/(RNIR + RRED), where RNIR is

near-infrared (NIR) reflectance and RRED is the red reflec-

tance. The series ended in 2012, 1 yr following the 2011

land-cover classification data. VGT-S10 products provided

10-d composite NDVI images, applying the maximum-

value-composite (MVC) technique to select the ‘best’

ground reflectance values from daily NDVI. Composite

data are then post-processed, which includes the incorpo-

ration of flags for bad data, clouds and a land mask to

reduce the influence of atmospheric conditions; flag data

were obtained from the Status Map layer in the S10 pro-

duct catalogue (http://www.vgt.vito.be/pages/Vegetation-

System/products.html; http://www.vgt.vito.be/userguide/

userguide.html). Details regarding the processing of NDVI

data are in Ceroni et al. (2015). To reduce additional

errors in the NDVI data, we calculated mean monthly

NDVI from 10-d increment values. We also calculated the

change in monthly NDVI values for each pixel, as abrupt

changes in NDVI (DNDVI > 0.4) can be an indicator of

atmospheric influence (Bojanowski et al. 2009). Among

the 168 monthly values for the original data set of

N = 1179 woodland pixels, DNDVI > 0.4 in only 43 of

175 727 instances, and thus no interpolation of NDVI val-

ues was used. We used K-means cluster analysis to iden-

tify anomalous groups of pixels, which identified a group

then removed from the sample with continuously low

NDVI values (<0 in some months) likely influenced by

background reflectance from water during flooding

events.

Calculation of fPAR

We estimated fPAR from SPOT NDVI using an empirical

approximation that assumes a non-linear relationship

between SPOT-NDVI and fPAR (Los et al. 2000; Pineiro

et al. 2006; Texeira et al. 2015). This accounts for the com-

monly noted saturation of NDVI values among many for-

ests with LAI > 3 and implies a linear relation between the

simple ratio index (SR = IR/NIR = (1 + NDVI)/

(1 � NDVI) and fPAR. Given that we build upon previous

research monitoring NDVI, and aim to provide compara-

tive data to previous studies on grassland sensitivity to cli-

mate in this region, we did not use other FAPAR products

(e.g. Diouf et al. 2015). The NDVI-fPAR relationship was

regionally parameterized in the Argentinean Pampa,

assigning zero absorption (fPAR = 0) to NDVI values to

pixels with no green vegetation (bare soil) and maximum

fPAR (fPAR = 0.95) to NDVI values from pixels with high

green biomass (Grigera et al. 2007). The resultant equa-

tion was:
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Fig. 2. Climodiagram of mean monthly temperature (values shown above

grey points in Celsius) and precipitation (mm, grey bars), with monthly

mean fPAR for riparian forest (solid black line) and hillside forest (dashed

line) and wooded savanna (dotted line) over the study period (1998–2012).
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fPAR ¼ min
SR� SRmin

ðSRmax � SRminÞ0:95
� �

where the extreme values of SR were SRmin = 1.55

(NDVI = 0.215) and SRmax = 11.62 (NDVI = 0.842).

While this relationship was calibrated for grassland sys-

tems, it has been applied to forests (Texeira et al. 2015)

and tree plantations (Vassallo et al. 2013) in the same

region. Moreover, SR values were similar to those derived

for deciduous broad-leaf forests globally (Peng et al. 2012),

where SRmin = 1.030 (NDVI = 0.015) and SRmax = 11.903

(NDVI = 0.845), for similar purposes of estimating fPAR

fromNDVI.

Land-cover classes

Woodland cover classes were obtained from the national

Land Cover Classification System for Uruguay based on

Landsat TM images from 2011 (DINOT/FAO 2013; Fig. 3).

Among four forest class covers, we grouped forests into

three classes: riverine (monte nativo de galer�ıa y monte

nativo), hillside (monte nativo serrano y de quebrada) and

wooded savanna (monte natural de parque). We overlaid

woodland class covers with SPOT imagery to select pixels

of ≥90% woodland cover (N = 1046 pixels of

1 km 9 1 km; Fig. 1b). We checked woodland class cov-

ers for errors and reclassified as ‘riparian forest’ 60 pixels

designated as ‘savanna’ in the protected area, Montes del

Queguay, (www.mvotma.gub.uy/areas-protegidas.html).

Given the patchiness of woodlands, we visually classified

all 1046 pixels into four tree cover classes, 0–24%, 25–
49%, 50–74% and 75–100%, using the ESRI built-in

Basemap Layer ‘World Imagery’ in ArcMap 10.0 at a

scale of 1:20 000. As this Basemap Layer includes high-

resolution imagery GeoEye IKONOS (1-m resolution) for

most of Uruguay, individual trees were easily visible to

visually classify tree cover. To reduce the effects of other

vegetation classes (e.g. grasslands, bare soil, water) on

forest NDVI, we excluded pixels <50% tree cover in

riparian and hillside forests, resulting in N = 270 pixels

of riparian forest (7.9% total forest cover) and N = 273

pixels of hillside forest (7.9% of total forest cover). Given

that wooded savanna is characterized by lower tree den-

sity (≤75% tree cover), we used all pixels of ≥90%
wooded savanna class regardless of tree cover (N = 45

pixels; 6.4% of total forest cover). Given their limited

extent, wooded savanna reflectance patterns are consid-

ered as ecosystem-scale responses in which understorey

grass cover is inherent. The final sample of 588 pixels

was largely dominated by trees.

Land cover classes
LandSat Imagery, 2011 

(DINOT/FAO 2013) 

Monthly rainfall
1998–2012

(INUMET, Uruguay)

Mean monthly temperature
1998–2012

(CRU TS 3.23; Harris et al. 2014)

Mean monthly NDVI of all 
woodland types (1179 pixels)

10-day NDVI 
04/1998-03/2012

(SPOT VGT-S10; Ceroni et al. 2015)

Mean monthly NDVI of “pure” 
woodland pixels (588 pixels)

Quality control & removal of pixels <50% 
tree cover in riparian and hillside forests

Calcula�on of fPAR (588 pixels)

Spa�al interpola�on to 
obtain monthly rainfall for 
all “pure” woodland pixels 

Analyses:
• Regression of fPAR and climate variables at all �me scales
• Trend analysis on all �me series data (fPAR, SPI, Tmean)
• Mixed models to test the effects of:

•SPI, Tmean, and woodland type on fPAR at all �me scales
•Tmax as well as SPI and Tsummer on annual fPAR.

Calcula�on of standardized 
precipita�on index (SPI)

Avg. sum fPAR over 
1,3,6,9,12,18 & 24 mo by 

woodland type

Avg. temperature over 
1,3,6,9,12,18 & 24 mo

by woodland type

Accumula�ve rainfall over 
1,3,6,9,12,18 & 24 mo

by woodland type

Fig. 3. Flow diagram of methods, data shown in dashed boxes, data processing in solid-lined boxes and the principal statistical analyses in the double-

outlined box at the bottom right.
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Climate data

Monthly precipitation data for 1998–2012 were obtained

from public databases of 18 meteorological stations main-

tained by the Uruguayan Institute of Meteorology (http://

meteorologia.gub.uy) and five stations maintained by the

National Agricultural Research Institute (INIA, unpubl.).

Standard anomalies were used to enhance confidence in

these values (Grumm & Hart 2001). To achieve monthly

precipitation data for each pixel, precipitation data were

interpolated by the Kriging method for each month

(Ninyerola et al. 2000), an appropriate method for esti-

mating monthly rainfall in relatively flat regions such as

Uruguay. To normalize precipitation data, the standardized

precipitation Index (SPI) was calculated as the SD of

precipitation fit to a gamma function (McKee et al. 1993).

We classified SPI values as severely dry (�2.5 to �1.49),

moderately dry (�1.49 to �1.0), mildly dry (�0.99 to

�0.01), mildly wet (0–0.99), moderately wet (1.00–1.49)
and severely wet (1.50–2.52) (McKee et al. 1993).

We obtained mean monthly temperature (Tmean),

monthly maximum temperature (Tmax) and summer tem-

peratures (Tsummer) from the CRU TS v 3.23 data set (Harris

et al. 2014) for 1998–2012. Within Uruguay, the data con-

sisted of 85 0.5° cells. Point data from the centroids of each

cell in the 0.5° latitutude/longitude grid of cells covering

Uruguay were overlaid with forest pixels, such that the

temperature time series data were assigned to forest pixels

falling within the same 0.5° CRU cell.

Statistical analyses

To compare average (mean � SD) woodland fPAR, we

used non-parametric Kruskal–Wallis tests (v2); to com-

pare variability and averages of fPAR among woodland

types we used Tukey HSD tests. We constructed time ser-

ies for monthly precipitation, SPI, Tmean, Tmax and fPAR

values for all 588 pixels of native forest and savanna, as

well as separate time series for each of the three wood-

land types. All time series were checked for autocorrela-

tion function (ACF) and partial autocorrelation (PACF)

using R time series packages (R Foundation for Statistical

Computing, Vienna, AT; http://www.statoek.wiso.uni-

goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_

intro.pdf). To evaluate trends in monthly fPAR, SPI and

temperature we used Mann–Kendall trend analysis for

the three woodland types (tau; Zhu & Southworth 2013).

We tested for spatial autocorrelation of mean annual

fPAR among pixels using Anselin Local Moran’s I statistic

calculated in ArcMap 10.0 to check for spatial grouping.

To evaluate the sensitivity of woodlands to precipitation

variability at different time scales, we used Pearson corre-

lation coefficient tests (R) to compare the correlation

between fPAR and SPI as well as fPAR and Tmean over 1,

3, 6, 9, 12, 18 and 24 mo (Vassallo et al. 2013). To deter-

mine at what period of the year seasonal rainfall and

temperature were most influential on ANPP we used cor-

relation functions (Blasing et al. 1984) to compare

annual fPAR of each woodland class to rainfall and tem-

perature at time intervals of 1–12 mo over 2 yr. A 1-mo

lag between fPAR and SPI – normalized rainfall data –
was considered for all correlations. To test for the effects

of SPI, Tmean and vegetation type on fPAR at each time

scale (1–24 mo) we used mixed models with an auto-cor-

relation structure (corAR1) to account for temporal auto-

correlation of monthly fPAR and SPI values (Zuur et al.

2013). The effects of Tmax and Tsummer on mean annual

(12-mo) fPAR were tested with similar models (Table 1,

Fig. 3). To examine seasonal differences in vegetation

response to precipitation, we grouped fPAR data accord-

ing to season, considering multiple lag times between

fPAR and rainfall. We examined the correlation between

mean annual rainfall and annual fPAR, as well as mean

annual temperature and annual fPAR using values

summed over a ‘vegetation year’, ending with the lowest

mean fPAR (Aug) and starting the next month (Sept;

Camberlin et al. 2007). Precipitation for vegetative year 1

began in Aug (Camberlin et al. 2007). All analyses were

conducted in R 3.0.1.

Results

Hillside forests of the Uruguayan sierra ecoregion had the

highest fPAR among woodland types (Figs 2 and 3;

Tukey HSD tests P < 0.05), and were the least variable

over time (0.47 � 0.08). Riparian forest fPAR on average

only surpassed upland forest fPAR in the hottest months

of the year (Tukey HSD P = 0.0006) and were more vari-

able over time (0.46 � 0.12; Fig. 2). As expected, given

the influence of background reflectance from grasses and

in many cases alkaline soils (known as blanqueales for

their white colour), wooded savannas located in the Lit-

toral ecoregion of Uruguay had the lowest fPAR values

with the largest range (Tukey HSD tests P < 0.05;

0.14 � 0.14). All woodlands displayed a bimodal annual

pattern in productivity, but spring and autumn peaks in

fPAR in hillside forests were delayed ~2 mo relative to

riparian and savanna forests (Fig. 2). NDVI averaged

0.70 � 0.03 in hillside forests and 0.69 � 0.06 in riparian

forests, but was 0.54 � 0.12 in wooded savannas. When

occurring in the same ecoregion (>10 pixels), hillside and

riparian forests had similar monthly mean fPAR values

(e.g. 0.42 vs 0.39 in the northern Basaltic ecoregion;

Kruskal–Wallis v2 = 1.9, P = 0.18). Riparian forest fPAR

was double that of wooded savanna in the Littoral west

(Kruskal–Wallis v2 = 46.1, P < 0.001).
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Woodland fPAR response to precipitation variability

Over the 14 yr, two dry periods with marked drops in

woodland fPAR occurred, one in 1999/2000 and another

in 2008/09, with ten consecutive months of below average

rainfall and a total annual rainfall of 923 mm (70 � 2%

of MAP; Fig. 4a). Among hillside and riparian forests, the

positive correlation between fPAR and accumulated rain-

fall – expressed as SPI – strengthened over increasing time

windows from 3 to 24 mo (Fig. 5). In contrast, fPAR of

wooded savanna was most highly correlated with rainfall

accumulated over 3 mo, considering a 1-mo lag period

(Fig. 5; R = 0.48, P < 0.001). Mixed models showed that

fPAR was explained by variation in rainfall at most time

scales >3 mo (Table 1). With respect to the hypothesis that

rainfall in certain seasons should be more influential on

fPAR, we found that all woodland types were highly corre-

lated with seasonal rainfall in the spring of the current

year of growth (Aug–Oct; R = 0.71–0.76, P < 0.05) and

the autumn of the previous year of vegetative growth

(Mar–May; R = 0.77–0.83, P < 0.05). Meanwhile, only

riparian forest and hillside forests showed a positive corre-

lation with rainfall in the autumn (May–Jul) 2.5 yr prior

(R = 0.72–0.83, P < 0.05). There was an overall declining

trend in fPAR of all three woodland types (Mann–Kendall
s = �0.337, �0.279 and �0.179 for riparian, hillside and

savanna woodlands, respectively; P < 0.0001 for all tests)

and in mean monthly precipitation from 1998–2012
(Mann–Kendall s = �0.109, P = 0.035), most apparent

from low rainfall events in 2004–2012 (Fig. 4).

The fPAR and temperature

Temperature was an important driver of seasonality in

fPAR for all woodlands, whereby the bi-annual peaks in

productivity occurred during moderate temperatures in

spring and autumn, and the decline in fPAR in summer

coincides with higher Tmean > 25 °C (Fig. 2, Table 1). The

effects of Tmean on fPAR were confounded by season, such

that hot summers had a strong negative effect on fPAR for

all woodland types (December–February; R = �0.64 to

�0.90, P < 0.05), while warm springs had a positive effect

only on fPAR of riparian forests (Aug–Oct; R = 0.64,

P < 0.05). Given the contrasting effects of spring and sum-

mer temperatures, the overall effect of Tmean on 12-mo

fPAR was not significant (Table 1). Nonetheless, mixed

models showed a negative effect of both maximum tem-

perature (Tmax) and mean summer temperatures (Tsummer)

on 12-mo fPAR for all woodland types (Table 1). There

was no trend in Tmean or Tmax over the time period studied

(s = 0.004–0.08, P < 0.10).

Comparisons of fPAR inwoodland savannas,

riparian forests and hillside forests at the pixel scale

Spatial variability in the correlation between rainfall and

fPAR suggest that the response of forests to rainfall vari-

ability was most intense in the land-locked interior, while

sensitivity to extreme summer temperatures was country-

wide (Appendix S1). Among individual forest pixels, there

was low variability in fPAR in southern Uruguay, which

had lower MAP (1100–1250 mm�yr�1) and lower rainfall

variability, and no correlation with MAP in a vegetation

year. In contrast, fPAR was lower but more highly corre-

lated with rainfall during a vegetation year in northern

and northeastern riparian forests where MAP is high

(>1400 mm�yr�1; Appendix S1). A positive correlation

between MAP and mean annual fPAR (N = 14 yr) in a

vegetation year was observed in pixels in north and north-

western Uruguay, but not in pixels along the southern

Table 1. Coefficients (and P-values) from mixed models with an autocorrelation structure (corAR1), testing the effects of SPI, mean monthly temperature

(Tmean), woodland type (riparian, hillside and savanna) and the interaction of SPI and Tmean with woodland type across increasing time scales from 1 mo

(considering both a 1 and 2 mo time lag between fPAR and rainfall) to 24 mo between 1998 and 2012. ‘fPAR – Veg. year’ shows coefficients from three

models testing the effects of SPI, temperature (Tmean, Tmax or Tsummer) and woodland type on fPAR in a vegetation year (Sept–Aug). Coefficients for wood-

land type are expressed as averages.

SPI Tmean Woodland type Woodland 9 SPI Woodland9 Tmean

fPAR– 1 mo w/1 mo lag 0.015*** 0.21***

fPAR– 1 mo w/2 mo lag 0.010*** 0.21***

fPAR– 3 mo 0.06*** 0.04*** 0.46*** 0.06* 0.01***

fPAR– 6 mo 0.06*** 0.04*** 0.86*** 0.034***

fPAR– 9 mo 0.16*** 0.11*** 1.1*** 0.031***

fPAR– 12 mo 0.16***

fPAR– 18 mo 0.19*** 0.23*** 0.12***

fPAR– 24 mo 0.11*** �0.26***

fPAR– Veg. Year (Tmean) 0.14* �0.84† (Tmean) 0.85*

fPAR– Veg. Year (Tmax) *0.095 **�0.81 (Tmax)

fPAR– Veg. Year (Tsummer) *0.038 *�0.58 (Tsummer) 0.84*

†P < 0.10; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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Atlantic coast. When examining the correlation of fPAR

with total accumulated rainfall at multiple time resolutions

of 3–24 mo, 98% of all 588 pixels showed a positive corre-

lation between fPAR and accumulated rainfall over 3 mo;

and 95% of pixels had a positive correlation between fPAR

and accumulated rainfall over 12 mo, excluding some

savanna pixels in the littoral zone. The majority (87%) of

pixels displayed a negative trend (Mann–Kendall tau tests,

P < 0.05) in fPAR over the study period, with the excep-

tion of some hillside forest pixels along the marine Atlantic

coast of southern Uruguay. Minimum fPAR in winter

(Jul–Sept) was shown for 87% of pixels, while maximum

fPAR in autumn (Mar–May) evident among 62% of pixels.

The negative correlation between Tsummer and fPAR was

displayed in the majority of pixels across the country

(Appendix S1). High spatial autocorrelation was observed

among high fPAR values in the large patch of riparian for-

est of the Queguay River, coinciding with the largest pro-

tected area of native riparian forest, Montes del Queguay,

of the National System of Protected Areas (SNAP).

Discussion

We contribute to mounting evidence showing that the

productivity of humid tropical and subtropical forests

responds to inter-annual variability in precipitation despite

the lack of correlation between mean annual rainfall and

NAPP (Zhang et al. 2013). This link between water avail-

ability and productivity has important implications for

forest–grassland transition zones such as Uruguay, which

is expected to experience forest expansion under increased

rainfall and decreased drought stress under future climate

change models (Staver et al. 2011). Second, we demon-

strate that although riparian forests green-up sooner than

hillside forests following summer, they are neither more

productive nor more resilient to precipitation and temper-

ature variability than upland forests. This similarity in the

responses of riparian and upland forests to rainfall and

temperature supports the convergence of woody species in

desiccation tolerance, despite differences in species compo-

sition and soil texture (Choat et al. 2012). Finally, we
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emphasize the importance of vegetation cover type in

interpreting temporal-scale responses of forest productivity

to water availability. Forest fPAR was more sensitive to

rainfall variability than wooded savanna fPAR – essentially
a composite signal of both trees and a C3/C4 grass–forb
understorey – reinforcing the broader hypothesis that dif-

ferences between grassland and forest phenology and pro-

ductivity in response to climate variability is a potential

mechanism or precursor for future changes in carbon pools

and biome transitions (Scheffer et al. 2009).

Temporal-scale responses of woodland productivity to

climate variability

Pluri-annual trends in precipitation played an important

role for forest productivity even when average water con-

ditions are considered non-limiting. The correlation of

rainfall with forest productivity in current years and previ-

ous years observed here could suggest that the effects of

accumulated rainfall operate at multiple scales. Large

woody species are generally sensitive to long-term precipi-

tation anomalies, as opposed to short-term monthly

fluctuations in rainfall, due to long-term impacts on

groundwater levels as well as lag time between rainfall

events and changes in leaf chemistry or canopy structure

(Nepstad et al. 1994). Nonetheless, recent studies show

that the effects of inter-annual variability in precipitation

on the physiological and structural traits that influence

fPAR – leaf senescence, LAI and tree canopy cover –mani-

fest from months to years following drought (Brando et al.

2010; Holmgren et al. 2013; Wagner et al. 2014). The

importance of accumulated rainfall over supra-annual

time scales is related in part to tree physiology and cambial

growth, as well as physical properties of the soil. Woody

species can accumulate carbohydrate reserves over time,

which are later allocated to growth and reproduction

(Kozlowski & Pallardy 1997). The physical characteristics

of soils and their capacity for long-term water storage also

explains the lag time between rainfall events and woody

species productivity; for example, water from previous

rainfalls can be tightly bound in small pores in the soil pro-

file and stored for later evapotranspiration by trees during

dry periods (Brooks et al. 2010). This accumulative and

lagged response has been shown among various field-
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based measures of ANPP such as leaf production, height

growth, radial growth (Wang et al. 2013) and wood den-

sity (D’Arrigo et al. 2000). Barring the possibility of corre-

lation among rainfall events, the correlation of woodland

fPAR to rainfall in multiple 3-mo periods over 2 yr could

indicate both long- and short-term effects of rainfall on the

quantity and quality of green foliage in this system.

In the context of climate variability, hot summers were

a principal limiting factor for forest productivity at an

annual temporal scale, indicating the importance of sum-

mer droughts for both riparian and upland woodlands.

Contrary to our hypothesis that riparian forests should be

less sensitive to drought indicators, riparian and hillside

forest productivity displayed minimal differences in sensi-

tivity to rainfall variability, providing little evidence for the

resilience of riparian forests to drought or their susceptibil-

ity to decreased productivity during extreme rainfall.

While we expected riparian forest productivity to be less

responsive to hot summers, riparian forest productivity

had a negative correlation with temperature, potentially a

result of presenting more semi-deciduous and deciduous

species (Brussa & Grela 2007). Studies show that regardless

of drought tolerance, tree species have similar physiologi-

cal limitations to soil water deficit (Choat et al. 2012). Sim-

ilarly, productivity in all ecosystems is limited by rainfall;

this convergence among biomes with respect to rainfall

use efficiency (ANPP/rainfall; Huxman et al. 2004) could

explain the similarity in both seasonality and response to

rainfall variability between forest and grassland ecosystems

in the Pampa biome (Texeira et al. 2015).

Seasonality of native forests and savanna

Forest sensitivity to extreme precipitation events depended

on the timing of rainfall anomalies with respect to growing

seasons. The spring and autumn peaks in fPAR in forests

and wooded savanna shown here are similar to seasonal

patterns of NDVI in surrounding grasslands that dominate

the Pampean region of South America (Vassallo et al.

2013; Baeza et al. 2010). Native grasslands in Uruguay

have a bimodal annual trend in fPAR, peaking in spring

(Nov) and late summer (Feb–Mar; Baeza et al. 2011;

Guido et al. 2014). This pattern has been associated with

seasonal changes in the relative abundance of C3 and C4

grasses in southern Uruguay, whereby C3 species con-

tribute to the spring peak in ANPP and C4 grasses con-

tribute to the late summer peak in fPAR (Altesor et al.

2005). For semi-deciduous seasonal forests (Oliveira-Filho

et al. 2013), this bimodality may be influenced by differ-

ences in photosynthetic activity as well as the timing of leaf

flushing and senescence among species. Forests here

peaked in greenness at similar times during the year to sur-

rounding grasslands, when temperatures are generally

moderate and PAR is high (Baeza et al. 2010).While grass-

lands have low greenness in both winter and summer

(Baeza et al. 2006), the vast majority of forest pixels dis-

played minimum greenness in the winter. Seasonal pat-

tern in greenness (NDVI) of native forests differed from

tree plantations, which peak annually in summer (Vassallo

et al. 2013). Future work should focus on the interacting

effects of temperature and precipitation on forest produc-

tivity, using evapotranspiration rates or relative humidity

as a proximate driver of productivity, as well as the effects

of regional climate phenomena, including the Multivariate

ENSO Indicator in winter months and the Antarctic Oscil-

lation (AAO) Index (van Leeuwen et al. 2013).

Conclusions

The sensitivity of subtropical forests to climate change is a

major concern in the Southern Cone (Pacheco et al.

2010). While increasing annual rainfall and declining

drought risk in southeastern South America is assumed to

provide favourable climate conditions for forest growth,

we provide some of the first evidence to show how differ-

ent nativewoodland ecosystems in Uruguay respond to cli-

mate variability in terms of leaf phenology and

productivity. This link between productivity and climate in

subtropical South America implies that with increasing

rainfall, the potential for carbon sequestration by native

forests increases (Zhang et al. 2010). While native wood-

land cover is limited relative to the vast grasslands and agri-

culture that characterize the Rio de la Plata Basin (Eva

et al. 2013), forests along riparian corridors are a critical

buffer between a terrestrial landscape undergoing rapid

agricultural intensification (Achkar et al. 2011; Vassallo

et al. 2013) and a hydrological network that serves as the

country’s principal source of drinking water and energy

(Conde & Sommruga 1999). Given that forest productivity

increases more rapidly with increasing rainfall in compar-

ison to grasslands in Uruguay (Texeira et al. 2015),

increasing rainfall could not only increase productivity,

but could be a potential precursor to the predicted

encroachment of forests into grasslands (Anadon et al.

2014).

While climate models predict relatively low drought risk

for this region, the increasing water demands from an

expanding industrial agriculture and forestation places

strong demands on groundwater availability (Silveira et al.

2006). Given that native forests generally occur as small

patches and corridors within a matrix of grasslands, agri-

culture and tree plantations, they are potentially suscepti-

ble to fluctuations in groundwater levels caused by water

consumption in these other land-cover classes. The Rio de

la Plata Basin is one of the world’s most productive agricul-

tural regions, undergoing rapid land-use conversion and
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intensification of agriculture in the past two decades (Baldi

& Paruelo 2008). How the functioning of these ecosystems

responds to climate variability is an important aspect in

sustaining their ecological role for biodiversity and ecosys-

tem health in a changing landscape. While increasing for-

est productivity with increasing rainfall shown here poses

potential benefits for carbon sequestration and wildlife

conservation, the potential expansion of forests into native

pastures also presents management concerns for maintain-

ing rangeland productivity.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1. Colour version of 1b, example SPOT

satellite pixels of 1 9 1 km with >90% overlaid with the

‘hillside forest’ land cover class (bosque serrano y de que-

brada).
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Appendix S2. Relationship between accumulated

annual fPAR in a vegetation year (Sept–Aug) and mean

annual precipitation as well as average temperature in

summer for riparian and hillside forests and wooded

savanna in Uruguay.

Appendix S3. Time series of fPAR and Tmean.

Appendix S4. Correlation (R) between annual fPAR

of each woodland class to rainfall and temperature at time

intervals of 1-12mo over 2 years.
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